//请定义一个队列并实现函数 max_value 得到队列里的最大值,要求函数max_value、push_back 和 pop_front 的均摊时间复杂度都
//是O(1)。
//
// 若队列为空,pop_front 和 max_value 需要返回 -1
//
// 示例 1:
//
// 输入:
//["MaxQueue","push_back","push_back","max_value","pop_front","max_value"]
//[[],[1],[2],[],[],[]]
//输出: [null,null,null,2,1,2]
//
//
// 示例 2:
//
// 输入:
//["MaxQueue","pop_front","max_value"]
//[[],[],[]]
//输出: [null,-1,-1]
//
//
//
//
// 限制:
//
//
// 1 <= push_back,pop_front,max_value的总操作数 <= 10000
// 1 <= value <= 10^5
//
// Related Topics 栈 Sliding Window
// 👍 195 👎 0
/*
* 剑指 Offer 59 - II 队列的最大值
* 2021-02-18 11:47:07
* @author oxygenbytes
*/
#include "leetcode.h"
//leetcode submit region begin(Prohibit modification and deletion)
class MaxQueue {
public:
queue<int> q;
deque<int> dq;
MaxQueue() {
}
int max_value() {
if(dq.empty()) return -1;
else return dq.front();
}
void push_back(int value) {
q.push(value);
while(!dq.empty() && dq.back() < value){
dq.pop_back();
}
dq.push_back(value);
}
int pop_front() {
int t = -1;
if(!q.empty()) t = q.front(), q.pop();
if(!dq.empty() && dq.front() == t) dq.pop_front();
return t;
}
};
/**
* Your MaxQueue object will be instantiated and called as such:
* MaxQueue* obj = new MaxQueue();
* int param_1 = obj->max_value();
* obj->push_back(value);
* int param_3 = obj->pop_front();
*/
//leetcode submit region end(Prohibit modification and deletion)